Field-induced quasiparticles driving the quantum phase transition in Ising-like antiferromagnetic spin chain

Quentin Faure^{1,2}, Virginie Simonet², Sylvain Petit³, Louis-Pierre Regnault¹, Martin Boehm⁴, Stéphane Raymond¹, Jonathan White⁵, Martin Månsson⁶, Christian Rüegg⁵, Benjamin Canals², Shintaro Takayoshi⁷, Shunsuke Furuya⁷, Thierry Giamarchi⁷, Claude Berthier⁸, Pascal Lejay², Béatrice Grenier¹

¹ INAC, MEM, CEA–UGA, Grenoble, France
² Institut Néel, CNRS–UGA, Grenoble
³ IRAMIS, LLB, CEA–CNRS, Gif-sur-Yvette, France
⁴ ILL, Grenoble, France
⁵ PSI, Villigen, Switzerland
⁶ KTH Royal Institute of Technology, Stockholm, Sweden
⁷ DPMC-MaNEP, University of Geneva, Switzerland
⁸ LNCMI, CNRS–UGA–UPS–INSA, Grenoble, France,

BaCo2V2O8 is a realization of a spin-1/2 Ising-like quasi-one dimensional antiferromagnet with remarkable static and dynamical behaviors [1]. In zero-field, the excitations of the Néel phase consist in confined two-spinon excitations stabilized by weak interchain interactions. They actually form two interlaced long-lived Zeeman ladders with respective transverse (T) and longitudinal (L) character regarding the direction of the magnetic moments (along the chain *c*-axis) [2]. We have explored the influence of an external magnetic field on this spin dynamics by inelastic neutron scattering on TASP (PSI) and on ThALES and IN12 (ILL) [3]. A contrasting behavior is observed for a longitudinal and transverse magnetic field. In the former case, the Néel phase excitations keep their transverse or longitudinal character, simply showing a Zeeman behavior up to the critical field at which the Néel ordering turns into a longitudinal spin density wave. The more spectacular effect comes with the transverse field where a mixing of the excitations occurs, hence materializing new kinds of entangled quasiparticles with both L and T characters. The lowest energy mode transforms progressively from transverse to longitudinal, before collapsing at the critical field marking a quantum phase transition to a novel phase [3].

References

[1] S. Kimura *et al.*, PRL **99**, 087602 (2007);

[2] B. Grenier et al.,, PRL 114, 017201 (2015); ibid., PRL 115, 119902 (2015);

[3] Q. Faure *et al.*, in preparation.