NMR investigation of the putative Bose-glass regime in the doped DTN at high magnetic fields unveils the existence of a new, impurity-induced BEC-type phase

Mladen Horvatić¹, Anna Orlova¹, Rémi Blinder¹, Edwin Kermarrec¹, Maxime Dupont², Nicolas Laflorence², Sylvain Capponi², Hadrien Mayaffre¹, Claude Berthier¹, Armando Paduan-Filho³

¹LNCMI CNRS/EMFL/UGA/UPS/INSIA, Grenoble, France
²LPT, CNRS/Université de Toulouse, Toulouse, France
³Instituto de Física, Universidade de São Paulo, São Paulo, Brazil

The NiCl₂-4SC(NH₂)₂ compound, or DTN for short, is one of the most studied archetype materials for the magnetic-field-induced 3D-ordered low-temperature phase of the Bose-Einstein condensation (BEC) type. When DTN is disordered by doping with Br, a localized, gapless Bose-glass (BG) phase is predicted to appear adjacent to the BEC phase [1], replacing the gapped regime of the pure system. Br-doped DTN is thus proposed as a unique thermodynamic model system for studying BG physics.

We have performed the first microscopic study [2], by nuclear magnetic resonance (NMR), of this putative BG regime in doped DTN at high magnetic field, and found a clear signature for a level crossing of the energy levels related to the localized, doping-induced impurity states, at the nearly doping-independent field value $H^* \approx 13.6 \, \text{T}$. Observation of the local NMR signal from the spin adjacent to the doped Br allowed us to fully characterize this impurity state and thus quantify a microscopic theoretical model. The level-crossing of the impurity states and their interaction are then providing the building blocks prone to create a new BEC-type order.

Indeed, a theoretical modelling [3], by quantum Monte Carlo simulation, have confirmed this scenario: close to H^* and at very low temperature, a localized BG regime is replaced by a new, delocalized, fully-3D coherent “BEC*” phase. Predicted magnetic field and doping dependence of this phase showed that it is experimentally accessible for higher doping levels [3]. We have thus started a new NMR investigation of 13% Br-doped DTN, and our preliminary data indeed detected the ordering transition at $T_c(H^*) \approx 0.15 \, \text{K}$. The existence of this new, “order-from-disorder” phase is thus definitely confirmed.