
Doped DTN at high fields – Theoretical surprise

Nicolas Laflorencie, Maxime Dupont, and Sylvain Capponi

LPT, CNRS/Université de Toulouse, Toulouse, France

Building on the recent NMR investigation¹ of the doped quasi-one-dimensional S = 1 antiferromagnetic material Ni(Cl_{1-x}Br_x)₂-4SC(NH₂)₂ (DTNX) at high magnetic field, we propose a new theoretical description,² which strongly contrasts with earlier proposals.³ In particular, instead of the previously claimed Bose Glass phase (a zero-temperature many-body localized state) at high magnetic field, we predict a novel type of impurity-induced order with a global quantum coherence over the full sample, yielding a new kind of Bose-Einstein condensation.

Based on an effective model description of interacting impurities and large scale numerical simulations of realistic quantum many-body Hamiltonians, the temperature - field phase diagram of DTNX is strongly reshaped, thus calling for new experimental investigations.

Beyond the canonical Bose-Einstein Condensate (BEC) known for DTN between $H_{c1} = 2.1$ T and $H_{c2} = 12.3$ T, a new type of condensate (BEC^{*}) exists in the vicinity of 13.6 T. This new (disorder-induced) quantum state emerges out of the interaction between localized impurity states, unveiled by a strong NMR relaxation peak as a function of the magnetic field.

¹A. Orlova *et al.*, Phys. Rev. Lett. **118**, 067203 (2017)

²M. Dupont et al., Phys. Rev. Lett. **118**, 067204 (2017).

³R. Yu et al., Nature **489**, 379 (2012).