Highly Efficient and Tuneable Spin-to-Charge Conversion at LaAlO₃/SrTiO₃ Interfaces Through the Inverse Rashba-Edlestein Effect

E. Lesne¹, Y. Fu², S. Oyarzun^{2,3}, J.C. Rojas-Sanchez¹, D.C. Vaz¹, H. Naganuma^{1,4}, G. Sicoli², J.-P. Attané²,
M. Jamet², E. Jacquet¹, J.-M. George¹, A. Barthélémy¹, H. Jaffrès¹, L. Vila², A. Fert¹ and <u>M. Bibes¹*</u>

¹ Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, 91767 Palaiseau, France ² INAC/SP2M, CEA-UJF, 38054 Grenoble, France

³ Departamento de Física, Universidad de Santiago de Chile (USACH), Chile

⁴ Tohoku University, Department of Applied Physics, 6-6-05 Aoba, Aramaki, Aoba, Sendai 980-8579, Japan * manuel.bibes@cnrs-thales.fr

The spin-orbit interaction couples the electrons' motion to their spin. Accordingly, passing a current in a material with strong spin-orbit coupling generates a transverse spin current (spin Hall effect, SHE) and vice-versa (inverse spin Hall effect, ISHE). The emergence of SHE and ISHE as charge-to-spin interconversion mechanisms offers a variety of novel spintronics functionalities and devices, some of which do not require any ferromagnetic material. However, the interconversion efficiency of SHE and ISHE (spin Hall angle) is a bulk property that rarely exceeds ten percent, and does not take advantage of interfacial and low-dimensional effects otherwise ubiquitous in spintronics hetero- and mesostructures. In this talk, we will show how to make use of an interface-driven spin-orbit coupling mechanism – the Rashba effect – in the oxide two-dimensional electron system (2DES) LaAlO₃/SrTiO₃ to achieve spin-to-charge conversion with unprecedented efficiency. Through spin-pumping, we inject a spin current from a NiFe film into the oxide 2DES and detect the resulting charge current, which can be strongly modulated by a gate voltage. We discuss the amplitude of the effect and its gate dependence on the basis of the electronic structure of the 2DES.